Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell
نویسندگان
چکیده
منابع مشابه
Energy Gap Demeanor for Carbon Doped with Chrome Nanoparticle to Increase Solar Energy Absorption
Novel method doped carbon with nanoparticle Cr2O3 and thin film has been studied in much thought in wavelength range, the doping can help new excellent physical and chemical properties for carbon, this application has a semiconductor feature. Nanocomposite thin film deposited on copper and glass substrates have been created by utilizing Spray Pyrolysis method. The prec...
متن کاملSpectroscopy of low energy solar neutrinos using CdTe detectors
The usage of a large amount of CdTe(CdZnTe) semiconductor detectors for solar neutrino spectroscopy in the low energy region is investigated. Several different coincidence signals can be formed on five different isotopes to measure the Be neutrino line at 862 keV in real-time. The most promising one is the usage of Cd resulting in 89 SNU. The presence of Te permits even the real-time detection ...
متن کاملmeasurement the absorption capacity of solar energy storage technology
Although solar energy is one of the most important renewable energies in Iran that most areas of the country, especially the Central Desert, have considerable ability to use, but the random nature of this type of energy makes it difficult to predict its output power and may cause problems in the performance of the feed systems. For this reason, the use of energy storage systems for periods of l...
متن کاملPlasmonic polymer tandem solar cell.
We demonstrated plasmonic effects in an inverted tandem polymer solar cell configuration by blending Au nanoparticles (NPs) into the interconnecting layer (ICL) that connects two subcells. Experimental results showed this plasmonic enhanced ICL improves both the top and bottom subcells' efficiency simultaneously by enhancing optical absorption. The presence of Au NPs did not cause electrical ch...
متن کاملCdTe Photovoltaic Devices for Solar Cell Applications
Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cells because of its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single junction solar cell and the high absorption coefficient allows films as thin as 2 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RSC Advances
سال: 2019
ISSN: 2046-2069
DOI: 10.1039/c9ra07782k